OXIDATION NUMBERS

Used to

- tell if oxidation or reduction has taken place
- · work out what has been oxidised and/or reduced
- · construct half equations and balance redox equations

Atoms and
simple ionsThe number of electrons which must be
added or removed to become neutral'

atoms	Na in Na $=$ 0	neutral already no need to add any electrons
cations	Na in Na ⁺ = $+1$	need to add 1 electron to make Na ⁺ neutral
anions	Cl in $Cl = -1$	need to take 1 electron away to make Cl⁻ neutral

<i>Q.1</i>	What is the oxidation state of the elements in ?				
	<i>a) N</i>	<i>b) Fe</i> ³⁺	$c) S^{2-}$		
	d) Cu	<i>e) Cu</i> ²⁺	$f) Cu^+$		

Molecules	'The sum of the oxidation numbers adds up to zero'						
Elements	H in H_2	= 0					
Compounds	C in CO_2	= +4	and	O = -2	+4	and	2(-2) = 0
• CO_2 is neutral, so the sum of the oxidation numbers must be zero							

- one element must have a positive ON, the other must be negative
- the more electronegative species will have the negative value
- electronegativity increases across a period and decreases down a group
- O is further to the right in the periodic table so it has the negative value (-2)
- C is to the left so it has the positive value (+4)
- one needs two O's at -2 each to balance one C at +4

- a) SO_2 b) SO_3 (c) NO d) NO_2
- e) N_2O f) MnO_2 g) P_4O_{10} h) Cl_2O_7

Complex 'The sum of the oxidation numbers adds up to the charge on the ion' ions

in SO_4^{2-} S = +6, O = -2 [i.e. +6 + 4(-2) = -2] the ion has a 2- charge

Example What is the oxidation number (O.N.) of Mn in MnO_4^- ?

- the O.N. of oxygen in most compounds is -2
- there are 4 O's so the sum of the O.N.'s = -8
- the overall charge on the ion is -1, : sum of all the O.N.'s must add up to -1
- the O.S. of Mn plus the sum of the O.N.'s of the four O's must equal -1
- therefore the O.N. of Manganese in $MnO_4^- = +7$

WHICH OXIDATION NUMBER ?

2

- elements can exist in more than one oxidation state
- certain elements can be used as benchmarks

HYDROGEN (+1)	except	0 -1	atom (H) and molecule (H₂) hydride ion, H⁻ [in sodium hydride, NaH]
OXYGEN (-2)	except	0 -1 +2	atom (O) and molecule (O ₂) in hydrogen peroxide, H_2O_2 in F_2O
FLUORINE (-1)	except	0	atom (F) and molecule (F_2)

Metals	 have positive values in compounds 					
	• value	e is usually that of the Group Number	Al is +3			
	 value 	es can go no higher than the Group No.	Mn can be +2,+4,+6,+7			
Non motolo	• most	ly pagative based on their usual ion	Chie usually 1			
Non metals		• mostly negative based on their usual ion Cl is usually -1				
	• can h	• can have values up to their Group No. Cl can be +1, +3, +5, +7				
	 to avoid ambiguity, the oxidation number is often included in the name 					
	e.g.	manganese(IV) oxide shows Mn is in the +4 c sulphur(VI) oxide for SO_3	vxidation state in MnO ₂			
		dichromate(VI) for $Cr_2O_7^{2-}$				
		phosphorus(V) chloride for PCI ₅ .				

<i>Q.3</i>	What is t	the theoreti	cal maxim	um oxidati	on state of	the follo	owing elem	ents?
	Na	Р	Ba	Pb	S		Mn	Cr
	State th	e most com	mon and t	he maximu	m oxidatio	n numbe	er in compo	ounds of
		1	Li	Br	Sr	0	В	N
	COMMO	ON						
	MAXIM	UM						

Q.4 Give the oxidation number of the element other than O, H or F in SO_2 NH_3 NO_2 NH_4^+ IF_7 Cl_2O_7 MnO_2^{2-} NO_2^{-}

11 7	Cl_2O_7	MnO_4	1103
NO_2^-	SO_{3}^{2-}	$S_2 O_3^{2-}$	$S_4 O_6^{2-}$

What is odd about the value of the oxidation state of S in $S_4O_6^{2-}$? Can it have such a value? Can you provide a suitable explanation?

Q.5 What is the oxidation number of each element in the following compounds ? *C* = **P** = N = CH_4 PCl_3 NCl_3 H =Cl =Cl = CS_2 C = ICl_5 **I** = BrF_3 Br =*S* = F =*Cl* = $MgCl_2$ Mg = H_3PO_4 H =NH₄Cl N =Cl =**P** = H =*0* = Cl = H_2SO_4 H = $SOCl_2$ *S* = $MgCO_3$ Mg =S =C =*0* = *0* = Cl =*0* =

REDOX REACTIONS

			O.S .
Redox	When reduction and ox	kidation take place	+7 -
Oxidation	Removal of electrons;	species get less negative / more positive	+6 -
Reduction	Gain of electrons; spe	cies becomes more negative / less positive	+5 - +4 - +3 - O R X E
	REDUCTION in O.N.	Species has been REDUCED e.g. Cl is reduced to Cl^{-} (0 to -1)	$\begin{array}{c} +2 - & X \\ +2 - & I \\ +1 - & D \\ 0 - & A \\ -1 - & T \\ \end{array}$
	INCREASE in O.N.	Species has been OXIDISED e.g. Na is oxidised to Na ⁺ (0 to +1)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	OIL RIG	Oxidation Is the Loss	
		Reduction Is the Gain of electrons	

Q.6 Classify the following (unbalanced) changes as oxidation, reduction or neither.

- a) $Mg \longrightarrow Mg^{2+}$ c) $Al^{3+} \longrightarrow Al$ b) $O^{2-} \longrightarrow O$
- *d)* Fe^{3+} —> Fe^{2+}
- *e)* Ti^{3+} —> Ti^{4+} f) 2Q \longrightarrow Q₂

Q.7 What change takes place in the oxidation state of the underlined element ? Classify the change as oxidation (O), reduction (R) or neither (N).

> b) $H\underline{N}O_3 \longrightarrow N_2O$ a) $\underline{N}O_3^- \longrightarrow NO$ c) $\underline{C}H_4 \longrightarrow CO$ d) $Cr_2 O_7^{2-} \longrightarrow Cr^{3+}$ e) $\underline{S}O_3^{2-} \longrightarrow SO_4^{2-}$ f) $\underline{Cr}_2 O_7^{2-} \longrightarrow Cr O_4^{2-}$ g) $H_2 \underline{O}_2 \longrightarrow H_2 O$ h) $H_2 \underline{O}_2 \longrightarrow O_2$

How to balance redox half equations

Step

1 Work out the formula of the species before and after the change;

- 2 If different numbers of the relevant species are on both sides, balance them
- 3 Work out the oxidation number of the element before and after the change
- 4 Add electrons to one side of the equation so the oxidation numbers balance
- **5** If the charges on all the species (ions and electrons) on either side of the equation do not balance, add H⁺ ions to one side to balance the charges
- 6 If the equation still doesn't balance, add sufficient water molecules to one side

Example 1 Iron(II) being oxidised to iron(III).

Steps1/2	Fe^{2+} ———> Fe^{3+}	
Step 3	+2 +3	
Step 4	Fe^{2+} —> Fe^{3+} + e^{-}	now balanced

Example 2 MnO_4^- being reduced to Mn^{2+} in acidic solution

Steps 1/2	$MnO_4^- \longrightarrow Mn^{2+}$
Step 3	+7 +2
Step 4	$MnO_4^{-} + 5e^{-} \longrightarrow Mn^{2+}$
Step 5	$MnO_4^- + 5e^- + 8H^+ - Mn^{2+}$
Step 6	MnO_4^- + 5e ⁻ + 8H ⁺ > Mn^{2+} + 4H ₂ O now balanced

Q.8 Balance the following half equations

I_2	_>	I^-
$C_2 O_4^{2-}$	_>	<i>2CO</i> ₂
H_2O_2	_>	O_2
H_2O_2	_>	H_2O
$Cr_2O_7^{2-}$	_>	Cr^{3+}
<i>SO</i> ₄ ²⁻	_>	SO_2

Combining half equations

A combination of two ionic half equations, one involving oxidation and the other reduction, produces a balanced REDOX equation. The equations can be balanced as follows...

- **Step 1** Write out the two half equations
 - 2 Multiply the equations so that the number of electrons in each is the same
 - 3 Add the equations and cancel out the electrons on either side of the equation
 - 4 If necessary, cancel out any other species which appear on both sides

Example The reaction between manganate(VII) and iron(II).

Step 1	Fe^{2+} —> Fe^{3+} + e^{-}	Oxidation
	MnO4 ⁻ + 5e ⁻ + 8H ⁺ > Mn ²⁺ + 4H2O	Reduction

Step 2	$5Fe^{2+} \longrightarrow 5Fe^{3+} + 5e^{-}$ $MnO_4^{-} + 5e^{-} + 8H^{+} \longrightarrow Mn^{2+} + 4H_2O$	multiplied by 5 multiplied by 1
Step 3	$MnO_4^- + 5e^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O$	+ 5Fe ³⁺ + 5e ⁻
	$MnO_4^- + 5e^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O$	+ 5Fe ³⁺ + 5 e⁻

gives $MnO_4^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$

Q.9 Construct balanced redox equations for the reactions between a) Mg and H^+ b) $Cr_2O_7^{2-}$ and Fe^{2+} c) H_2O_2 and $MnO_4^$ d) $C_2O_4^{2-}$ and $MnO_4^$ e) $S_2O_3^{2-}$ and I_2 f) $Cr_2O_7^{2-}$ and I^-

6